************************************************************************ * * * This method collection is the copyright of Anthony P. Smith. * * * * You are welcome to make copies of the material for your own use. * * * * You may distribute copies to others provided that you do not do so * * for profit and provided that you include this copyright statement. * * * * If you modify the material before distributing it, you must * * include a clear notice that the material has been modified. * * * ************************************************************************ Anthony P. Smith ------------ COLLECTION OF ALLIANCE METHODS ------------- November 2024 ------------- CONTENTS Introduction INTRO.TXT Minimus methods ALL4.TXT Doubles methods ALL5.TXT Minor methods ALL6.TXT Major and Caters methods ALL8.TXT Royal and higher stage methods ALL10.TXT Alphabetical Index ALLIND.TXT INTRODUCTION This collection contains rung Alliance methods for all stages from Doubles upwards. Each method entry consists of an index number, the name, place notation, lead head produced, summary tenors together falseness, date and place of the first peal and references. The index number is only significant within this edition of this collection. For palindromic methods the place notation is given up to and including the half lead place, followed by the lead end place. For non-palindromic methods the entire place notation is given. For methods with Plain Bob lead heads, the lead head produced is given by a code from the following tables. Lead heads for methods in this collection are in the top left and bottom right hand sections, codes a - f and p - q are for seconds place lead ends and codes g - m and r - s for lead ends with no internal places. For methods with non-Plain Bob lead heads the actual lead head is given. TABLES OF PLAIN BOB LEAD HEAD CODES ------------------------------------------------------------------------------------------------ | Minor Major Royal Maximus | Doubles Triples Caters Cinques | |-----------------------------------------------|----------------------------------------------| | a 135264 13527486 1352749608 13527496E8T0 g | a 12534 1253746 125374968 12537496E80 g | | b 156342 15738264 1573920486 157392E4T608 h | b - 1275634 127593846 127593E4068 h | | c - 17856342 * 1795E3T20486 j | c - - 129785634 * j | | c1 - - 1907856342 19E7T5038264 j1 | c1 - - - 12E90785634 j1 | | c2 - - - 1ET907856342 j2 | | | d2 - - - 1T0E89674523 k2 | | | d1 - - 1089674523 108T6E492735 k1 | d1 - - - 120E8967453 k1 | | d - 18674523 * 18604T2E3957 k | d - - 128967453 * k | | e 164523 16482735 1648203957 1648203T5E79 l | e - 1267453 126849375 1268403E597 l | | f 142635 14263857 1426385079 142638507T9E m | f 12453 1246375 124638597 124638507E9 m | |-----------------------------------------------|----------------------------------------------| | p 125364 12537486 1253749608 12537496E8T0 r | p 13524 1352746 135274968 13527496E80 r | | p1 - - 1297058364 1297E5T30486 r1 | p1 - - 179583624 1795E302846 r1 | | q1 - - 1280694735 12806T4E3957 s1 | q1 - - 186947253 18604E29375 s1 | | q 124635 12463857 1246385079 124638507T9E s | q 14253 1426375 142638597 142638507E9 s | ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------- | Fourteen Sixteen | Sextuples Septuples | |---------------------------------------|-------------------------------------| | a 13527496E8A0BT 13527496E8A0CTDB g | a 12537496E8A0T 12537496E8A0CTB g | | b 157392E4A6B8T0 157392E4A6C8D0BT h | b 127593E4A6T80 127593E4A6C8B0T h | | c 1795E3A2B4T608 * j | c 1297E5A3T4068 1297E5A3C4B6T80 j | | c1 19E7A5B3T20486 19E7A5C3D2B4T608 j1 | c1 12E9A7T503846 12E9A7C5B3T4068 j1 | | c2 1EA9B7T5038264 * j2 | c2 12AET90785634 12AEC9B7T503846 j2 | | c3 1ABET907856342 * j3 | c3 - 12CABET90785634 j3 | | c4 - 1CDABET907856342 j4 | | | d4 - 1DBCTA0E89674523 k4 | | | d3 1BTA0E89674523 * k3 | d3 - 12BCTA0E8967453 k3 | | d2 1T0B8A6E492735 * k2 | d2 12TA0E8967453 12TB0C8A6E49375 k2 | | d1 108T6B4A2E3957 108T6B4D2C3A5E79 k1 | d1 120T8A6E49375 120T8B6C4A3E597 k1 | | d 18604T2B3A5E79 * k | d 12806T4A3E597 12806T4B3C5A7E9 k | | e 1648203T5B7A9E 1648203T5B7D9CEA l | e 1268403T5A7E9 1268403T5B7C9AE l | | f 142638507T9BEA 142638507T9BEDAC m | f 124638507T9AE 124638507T9BECA m | |---------------------------------------|-------------------------------------| | p 12537496E8A0BT 12537496E8A0CTDB r | p 13527496E8A0T 13527496E8A0CTB r | | p1 * 1297E5A3C4D6B8T0 r1 | p1 * 1795E3A2C4B6T80 r1 | | p2 12AEB9T7058364 12AEC9D7B5T30486 r2 | p2 1EA9T70583624 1EA9C7B5T302846 r2 | | q2 12TB0A8E694735 12TB0D8C6A4E3957 s2 | q2 1T0A8E6947253 1T0B8C6A4E29375 s2 | | q1 * 12806T4B3D5C7A9E s1 | q1 * 18604T2B3C5A7E9 s1 | | q 124638507T9BEA 124638507T9BEDAC s | q 142638507T9AE 142638507T9BECA s | ------------------------------------------------------------------------------- The following symbols are used for bell numbers above twelve. ---------------------- | thirteen | A | | fourteen | B | | fifteen | C | | sixteen | D | ---------------------- The letter(s) in the column headed fch give details of the internal falseness, with the tenors together, of that method. The notation is that used by Roger Baldwin in his classification of the 120 false course-heads, slightly extended for Royal and Maximus methods. In this classification, the groups of false course-heads, tenors together members only, are: --------------------------------------------------------------------------------------------------------- | B C D E F G H I K L M N | |-------------------------------------------------------------------------------------------------------| | 24365 25634 32546 32465 32654 56423 53462 54632 53624 26543 ) L1 23564 34562 | | 46253 43265 45236 63542 63425 65324 65432 23645 46325 | | 36245 ) L2 25463 54263 | | 42563 ) 26435 62345 | | ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- | | 23654 34265 24356 24635 24563 36542 34526 ) K1 35462 ) N1 | | 25436 42365 53426 25364 26345 - 46523 - 46352 ) - - 43625 ) | | 32456 63452 56243 52346 ) 53264 ) | | 43256 62543 64253 ) 62435 ) | | | | 54362 ) K2 35624 ) N2 | | 64325 ) 45632 ) | | 52634 ) | | 65234 ) | | | |-------------------------------------------------------------------------------------------------------| | O P R S T U a b c d e f | |-------------------------------------------------------------------------------------------------------| | 36524 54326 ) P1 35642 34625 24536 34256 ) U1 | | 46532 64352 ) 45623 45362 24653 35426 ) - - - - - - | | 52643 56234 52364 25346 42356 ) | | 65243 56342 ) P2 62534 64235 26354 43652 ) | | 64523 ) 36452 52436 ) | | 43526 63254 ) | | 53246 | | 62453 35264 ) U2 | | 42635 ) | | ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- | | 53642 32564 23465 ) a1 25643 35246 34652 36425 54623 | | 56432 - - - 32645 - 26534 36254 45326 43562 56324 | | 63524 45263 23546 ) a2 42536 54236 52463 64532 | | 65423 46235 26453 ) 42653 62354 63245 65342 | --------------------------------------------------------------------------------------------------------- In-course false course-heads are shown in each case above the line, while the out-of-course false course heads appear below the line. The groups designated by small letters contain only out-of-course false course-heads. In Major, the groups including both in-course and out-of-course false course-heads, and which are designated by capital letters, always occur as complete groups. Their presence is indicated in the tables by a single occurrence of the corresponding letter. In Royal and Maximus, the in-course and out-of-course components may occur separately, and for these categories of methods, the in-course and out-of course false course-head groups are shown separated by a slash. For example, the presence of letter E before a slash would indicate the false course-heads 32465 and 43265; while after a slash, would indicate the false course-heads 24635 and 25364. If both sets of false course-heads were present, E would be included twice. A further consideration in Royal and Maximus is that certain of the groups defined above, K, L, N, P, U and a can subdivide. The subdivisions, indicated by K1, K2, L1, L2, N1, N2, P1, P2, U1, U2, a1 and a2 are also shown above. As an example, Ibstock Surprise Royal fch is given as L1/BDK1c. The false course-heads associated with Ibstock are accordingly: in-course 26543 out-of-course 23654, 25436, 32456, 43256, 24356, 53426, 63452, 34526, 46352, 52346, 64253, 35246, 36254, 42536, 42653. Following the accepted convention, methods having no in-course false course-heads have been designated as cps ("clear proof scale"), although these methods will usually have out-of-course false course-heads. The 24 groups of false course-heads with tenors together also contain tenors parted members. The 3 additional groups of false course-heads with no tenors together members are: ------------------------------------------------------------- | X | Y (gamma) | | 257643 374652 627534 723645 | 267534 364752 625743 724635 | | 265743 437625 632754 724653 | 275643 367542 635724 726534 | | 276354 457632 635742 736425 | 276453 376425 637425 734652 | | 276435 475623 657423 746532 | 675423 764532 | | 346752 526734 672453 762354 | | | 367245 546723 673245 763542 | Z (delta) | | 367524 564732 675324 764235 | 457623 546732 672354 763245 | ------------------------------------------------------------- The notation is due to Edmund Shuttleworth, simplified by John Leary. When assessing the suitability of a composition with tenors together courses only, the presence of any of X, Y, Z against the method may be ignored. However if a composition has tenors parted courses, the presence of any of these additional groups must be considered. Note that the groups of false course-heads containing only out-of-course tenors together members (a - f) must be taken into account, even if the composition uses Bobs only, because these groups contain in-course tenors parted members. Entries for methods which appeared in the Collection of Minor Methods prior to the 6th edition include a method number in a column headed CCC. So far as possible method entries include a Ringing World reference of the form year/page or, for the years 1911 to 1916, volume/page preceded by the letter V. Collection created and maintained by Anthony P. Smith Email smith_a_p@btinternet.com