************************************************************************ * * * This method collection is the copyright of Anthony P. Smith. * * * * You are welcome to make copies of the material for your own use. * * * * You may distribute copies to others provided that you do not do so * * for profit and provided that you include this copyright statement. * * * * If you modify the material before distributing it, you must * * include a clear notice that the material has been modified. * * * ************************************************************************ Anthony P. Smith ------------ COLLECTION OF SURPRISE METHODS ------------- November 2024 ------------- CONTENTS Introduction INTRO.TXT Minor methods SURP6.TXT Major methods SURP8.TXT Royal and Cinques methods SURP10.TXT Maximus methods SURP12.TXT Fourteen and higher stage methods SURP14.TXT Alphabetical Index SURPIND.TXT INTRODUCTION This collection contains rung Surprise methods for all stages from Minor upwards. Each method entry consists of an index number, the name, place notation, lead head produced, summary tenors together falseness, date and place of the first peal and references. The index number is only significant within this edition of this collection. For palindromic methods the place notation is given up to and including the half lead place, followed by the lead end place. For non-palindromic methods the entire place notation is given. For methods with Plain Bob lead heads, the lead head produced is given by a code from the following tables. Lead heads for methods in these collections are in the top left and bottom right hand sections, codes a - f and p - q are for seconds place lead ends and codes g - m and r - s for lead ends with no internal places. For methods with non-Plain Bob lead heads the actual lead head is given. TABLES OF PLAIN BOB LEAD HEAD CODES ------------------------------------------------------------------------------------------------ | Minor Major Royal Maximus | Doubles Triples Caters Cinques | |-----------------------------------------------|----------------------------------------------| | a 135264 13527486 1352749608 13527496E8T0 g | a 12534 1253746 125374968 12537496E80 g | | b 156342 15738264 1573920486 157392E4T608 h | b - 1275634 127593846 127593E4068 h | | c - 17856342 * 1795E3T20486 j | c - - 129785634 * j | | c1 - - 1907856342 19E7T5038264 j1 | c1 - - - 12E90785634 j1 | | c2 - - - 1ET907856342 j2 | | | d2 - - - 1T0E89674523 k2 | | | d1 - - 1089674523 108T6E492735 k1 | d1 - - - 120E8967453 k1 | | d - 18674523 * 18604T2E3957 k | d - - 128967453 * k | | e 164523 16482735 1648203957 1648203T5E79 l | e - 1267453 126849375 1268403E597 l | | f 142635 14263857 1426385079 142638507T9E m | f 12453 1246375 124638597 124638507E9 m | |-----------------------------------------------|----------------------------------------------| | p 125364 12537486 1253749608 12537496E8T0 r | p 13524 1352746 135274968 13527496E80 r | | p1 - - 1297058364 1297E5T30486 r1 | p1 - - 179583624 1795E302846 r1 | | q1 - - 1280694735 12806T4E3957 s1 | q1 - - 186947253 18604E29375 s1 | | q 124635 12463857 1246385079 124638507T9E s | q 14253 1426375 142638597 142638507E9 s | ------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------------------------------- | Fourteen Sixteen Eighteen Twenty | Sextuples Septuples Octuples Nineteen | |-------------------------------------------------------------------------------|---------------------------------------------------------------------------| | a 13527496E8A0BT 13527496E8A0CTDB 13527496E8A0CTFBGD 13527496E8A0CTFBHDJG g | a 12537496E8A0T 12537496E8A0CTB 12537496E8A0CTFBD 12537496E8A0CTFBHDG g | | b 157392E4A6B8T0 157392E4A6C8D0BT 157392E4A6C8F0GTDB 157392E4A6C8F0HTJBGD h | b 127593E4A6T80 127593E4A6C8B0T 127593E4A6C8F0DTB 127593E4A6C8F0HTGBD h | | c 1795E3A2B4T608 * 1795E3A2C4F6G8D0BT 1795E3A2C4F6H8J0GTDB j | c 1297E5A3T4068 1297E5A3C4B6T80 * 1297E5A3C4F6H8G0DTB j | | c1 19E7A5B3T20486 19E7A5C3D2B4T608 19E7A5C3F2G4D6B8T0 19E7A5C3F2H4J6G8D0BT j1 | c1 12E9A7T503846 12E9A7C5B3T4068 12E9A7C5F3D4B6T80 12E9A7C5F3H4G6D8B0T j1 | | c2 1EA9B7T5038264 * 1EA9C7F5G3D2B4T608 1EA9C7F5H3J2G4D6B8T0 j2 | c2 12AET90785634 12AEC9B7T503846 * 12AEC9F7H5G3D4B6T80 j2 | | c3 1ABET907856342 * 1ACEF9G7D5B3T20486 1ACEF9H7J5G3D2B4T608 j3 | c3 - 12CABET90785634 * 12CAFEH9G7D5B3T4068 j3 | | c4 - 1CDABET907856342 1CFAGED9B7T5038264 1CFAHEJ9G7D5B3T20486 j4 | c4 - - 12FCDABET90785634 12FCHAGED9B7T503846 j4 | | c5 - - 1FGCDABET907856342 1FHCJAGED9B7T5038264 j5 | c5 - - - 12HFGCDABET90785634 j5 | | c6 - - - 1HJFGCDABET907856342 j6 | | | d6 - - - 1JGHDFBCTA0E89674523 k6 | | | d5 - - 1GDFBCTA0E89674523 1GDJBHTF0C8A6E492735 k5 | d5 - - - 12GHDFBCTA0E8967453 k5 | | d4 - 1DBCTA0E89674523 1DBGTF0C8A6E492735 1DBGTJ0H8F6C4A2E3957 k4 | d4 - - 12DFBCTA0E8967453 12DGBHTF0C8A6E49375 k4 | | d3 1BTA0E89674523 * 1BTD0G8F6C4A2E3957 1BTD0G8J6H4F2C3A5E79 k3 | d3 - 12BCTA0E8967453 * 12BDTG0H8F6C4A3E597 k3 | | d2 1T0B8A6E492735 * 1T0B8D6G4F2C3A5E79 1T0B8D6G4J2H3F5C7A9E k2 | d2 12TA0E8967453 12TB0C8A6E49375 * 12TB0D8G6H4F3C5A7E9 k2 | | d1 108T6B4A2E3957 108T6B4D2C3A5E79 108T6B4D2G3F5C7A9E 108T6B4D2G3J5H7F9CEA k1 | d1 120T8A6E49375 120T8B6C4A3E597 120T8B6D4F3C5A7E9 120T8B6D4G3H5F7C9AE k1 | | d 18604T2B3A5E79 * 18604T2B3D5G7F9CEA 18604T2B3D5G7J9HEFAC k | d 12806T4A3E597 12806T4B3C5A7E9 * 12806T4B3D5G7H9FECA k | | e 1648203T5B7A9E 1648203T5B7D9CEA 1648203T5B7D9GEFAC 1648203T5B7D9GEJAHCF l | e 1268403T5A7E9 1268403T5B7C9AE 1268403T5B7D9FECA 1268403T5B7D9GEHAFC l | | f 142638507T9BEA 142638507T9BEDAC 142638507T9BEDAGCF 142638507T9BEDAGCJFH m | f 124638507T9AE 124638507T9BECA 124638507T9BEDAFC 124638507T9BEDAGCHF m | |-------------------------------------------------------------------------------|---------------------------------------------------------------------------| | p 12537496E8A0BT 12537496E8A0CTDB 12537496E8A0CTFBGD 12537496E8A0CTFBHDJG r | p 13527496E8A0T 13527496E8A0CTB 13527496E8A0CTFBD 13527496E8A0CTFBHDG r | | p1 * 1297E5A3C4D6B8T0 1297E5A3C4F6G8D0BT * r1 | p1 * 1795E3A2C4B6T80 1795E3A2C4F6D8B0T * r1 | | p2 12AEB9T7058364 12AEC9D7B5T30486 12AEC9F7G5D3B4T608 12AEC9F7H5J3G4D6B8T0 r2 | p2 1EA9T70583624 1EA9C7B5T302846 1EA9C7F5D3B2T4068 1EA9C7F5H3G2D4B6T80 r2 | | p3 - - 12FCGADEB9T7058364 12FCHAJEG9D7B5T30486 r3 | p3 - - 1CFADEB9T70583624 1CFAHEG9D7B5T302846 r3 | | q3 - - 12DGBFTC0A8E694735 12DGBJTH0F8C6A4E3957 s3 | q3 - - 1DBFTC0A8E6947253 1DBGTH0F8C6A4E29375 s3 | | q2 12TB0A8E694735 12TB0D8C6A4E3957 12TB0D8G6F4C3A5E79 12TB0D8G6J4H3F5C7A9E s2 | q2 1T0A8E6947253 1T0B8C6A4E29375 1T0B8D6F4C2A3E597 1T0B8D6G4H2F3C5A7E9 s2 | | q1 * 12806T4B3D5C7A9E 12806T4B3D5G7F9CEA * s1 | q1 * 18604T2B3C5A7E9 18604T2B3D5F7C9AE * s1 | | q 124638507T9BEA 124638507T9BEDAC 124638507T9BEDAGCF 124638507T9BEDAGCJFH s | q 142638507T9AE 142638507T9BECA 142638507T9BEDAFC 142638507T9BEDAGCHF s | ------------------------------------------------------------------------------------------------------------------------------------------------------------- The following symbols are used for bell numbers above twelve. Note that the letter E is already in use for eleven and that the letter I is not used because of its potential confusion with the number one. ---------------------- | thirteen | A | | fourteen | B | | fifteen | C | | sixteen | D | | seventeen | F | | eighteen | G | | nineteen | H | | twenty | J | ---------------------- The letter(s) in the column headed fch give details of the internal falseness, with the tenors together, of that method. The notation is that used by Roger Baldwin in his classification of the 120 false course-heads, slightly extended for Royal and Maximus methods. In this classification, the groups of false course-heads, tenors together members only, are: --------------------------------------------------------------------------------------------------------- | B C D E F G H I K L M N | |-------------------------------------------------------------------------------------------------------| | 24365 25634 32546 32465 32654 56423 53462 54632 53624 26543 ) L1 23564 34562 | | 46253 43265 45236 63542 63425 65324 65432 23645 46325 | | 36245 ) L2 25463 54263 | | 42563 ) 26435 62345 | | ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- | | 23654 34265 24356 24635 24563 36542 34526 ) K1 35462 ) N1 | | 25436 42365 53426 25364 26345 - 46523 - 46352 ) - - 43625 ) | | 32456 63452 56243 52346 ) 53264 ) | | 43256 62543 64253 ) 62435 ) | | | | 54362 ) K2 35624 ) N2 | | 64325 ) 45632 ) | | 52634 ) | | 65234 ) | | | |-------------------------------------------------------------------------------------------------------| | O P R S T U a b c d e f | |-------------------------------------------------------------------------------------------------------| | 36524 54326 ) P1 35642 34625 24536 34256 ) U1 | | 46532 64352 ) 45623 45362 24653 35426 ) - - - - - - | | 52643 56234 52364 25346 42356 ) | | 65243 56342 ) P2 62534 64235 26354 43652 ) | | 64523 ) 36452 52436 ) | | 43526 63254 ) | | 53246 | | 62453 35264 ) U2 | | 42635 ) | | ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- | | 53642 32564 23465 ) a1 25643 35246 34652 36425 54623 | | 56432 - - - 32645 - 26534 36254 45326 43562 56324 | | 63524 45263 23546 ) a2 42536 54236 52463 64532 | | 65423 46235 26453 ) 42653 62354 63245 65342 | --------------------------------------------------------------------------------------------------------- In-course false course-heads are shown in each case above the line, while the out-of-course false course heads appear below the line. The groups designated by small letters contain only out-of-course false course-heads. In Major, the groups including both in-course and out-of-course false course-heads, and which are designated by capital letters, always occur as complete groups. Their presence is indicated in the tables by a single occurrence of the corresponding letter. In Royal and Maximus, the in-course and out-of-course components may occur separately, and for these categories of methods, the in-course and out-of course false course-head groups are shown separated by a slash. For example, the presence of letter E before a slash would indicate the false course-heads 32465 and 43265; while after a slash, would indicate the false course-heads 24635 and 25364. If both sets of false course-heads were present, E would be included twice. A further consideration in Royal and Maximus is that certain of the groups defined above, K, L, N, P, U and a can subdivide. The subdivisions, indicated by K1, K2, L1, L2, N1, N2, P1, P2, U1, U2, a1 and a2 are also shown above. As an example, Ibstock Surprise Royal fch is given as L1/BDK1c. The false course-heads associated with Ibstock are accordingly: in-course 26543 out-of-course 23654, 25436, 32456, 43256, 24356, 53426, 63452, 34526, 46352, 52346, 64253, 35246, 36254, 42536, 42653. Following the accepted convention, methods having no in-course false course-heads have been designated as cps ("clear proof scale"), although these methods will usually have out-of-course false course-heads. The 24 groups of false course-heads with tenors together also contain tenors parted members. The 3 additional groups of false course-heads with no tenors together members are: ------------------------------------------------------------- | X | Y (gamma) | | 257643 374652 627534 723645 | 267534 364752 625743 724635 | | 265743 437625 632754 724653 | 275643 367542 635724 726534 | | 276354 457632 635742 736425 | 276453 376425 637425 734652 | | 276435 475623 657423 746532 | 675423 764532 | | 346752 526734 672453 762354 | | | 367245 546723 673245 763542 | Z (delta) | | 367524 564732 675324 764235 | 457623 546732 672354 763245 | ------------------------------------------------------------- The notation is due to Edmund Shuttleworth, simplified by John Leary. When assessing the suitability of a composition with tenors together courses only, the presence of any of X, Y, Z against the method may be ignored. However if a composition has tenors parted courses, the presence of any of these additional groups must be considered. Note that the groups of false course-heads containing only out-of-course tenors together members (a - f) must be taken into account, even if the composition uses Bobs only, because these groups contain in-course tenors parted members. Entries for methods which appeared in the Collection of Minor Methods prior to the 6th edition include a method number in a column headed CCC. So far as possible method entries include a Ringing World reference of the form year/page or, for the years 1911 to 1916, volume/page preceded by the letter V. Collection created and maintained by Anthony P. Smith Email smith_a_p@btinternet.com