These method collections are the copyright of Anthony P. Smith. You are welcome to make copies of the material for your own use. You may distribute copies to others provided that you do not do so for profit and provided that you include this copyright statement. If you modify the material before distributing it, you must include a clear notice that the material has been modified.
These collections contain rung methods for all stages from Minimus upwards. They also contain other methods from the following earlier collections.
Each method entry consists of the name, place notation, lead head produced, summary tenors together falseness, date and place of the first peal and references.
The terms "Imperial", "College" or "Court" have been retained as part of the names of plain methods which appeared in the 1926 collection and also distinguish between methods on different stages, not related as in the Central Council Decision on Method Extension, which would otherwise have the same name.
Twin-hunt methods are grouped according to the symmetry of their place notations. This symmetry is indicated by (a), (b) or (c) in the table headings, where (a) means symmetric like Grandsire, (b) means symmetric like Plain Bob and (c) means asymmetric.
For palindromic single-hunt and twin-hunt (b) methods the place notation is given up to and including the half lead place, followed by the lead end place. For twin-hunt (a) methods the place notation is given up to and including the places made while the hunt bells cross behind. For twin-hunt (c) and non-palindromic methods the entire place notation is given.
For methods with Plain Bob lead heads, the lead head produced is given by a code from the following tables. Lead heads for single-hunt methods are in the top left and bottom right hand sections, codes a - f and p - q are for seconds place lead ends and codes g - m and r - s for lead ends with no internal places. Lead heads for twin-hunt methods are in the top right and bottom left hand sections. For methods with non-Plain Bob lead heads the actual lead head is given.
Minimus | Minor | Major | Royal | Maximus | Doubles | Triples | Caters | Cinques | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | 1342 | 135264 | 13527486 | 1352749608 | 13527496E8T0 | g | a | 12534 | 1253746 | 125374968 | 12537496E80 | g |
b | - | 156342 | 15738264 | 1573920486 | 157392E4T608 | h | b | - | 1275634 | 127593846 | 127593E4068 | h |
c | - | - | 17856342 | * | 1795E3T20486 | j | c | - | - | 129785634 | * | j |
c1 | - | - | - | 1907856342 | 19E7T5038264 | j1 | c1 | - | - | - | 12E90785634 | j1 |
c2 | - | - | - | - | 1ET907856342 | j2 | ||||||
d2 | - | - | - | - | 1T0E89674523 | k2 | ||||||
d1 | - | - | - | 1089674523 | 108T6E492735 | k1 | d1 | - | - | - | 120E8967453 | k1 |
d | - | - | 18674523 | * | 18604T2E3957 | k | d | - | - | 128967453 | * | k |
e | - | 164523 | 16482735 | 1648203957 | 1648203T5E79 | l | e | - | 1267453 | 126849375 | 1268403E597 | l |
f | 1423 | 142635 | 14263857 | 1426385079 | 142638507T9E | m | f | 12453 | 1246375 | 124638597 | 124638507E9 | m |
p | - | 125364 | 12537486 | 1253749608 | 12537496E8T0 | r | p | 13524 | 1352746 | 135274968 | 13527496E80 | r |
p1 | - | - | - | 1297058364 | 1297E5T30486 | r1 | p1 | - | - | 179583624 | 1795E302846 | r1 |
q1 | - | - | - | 1280694735 | 12806T4E3957 | s1 | q1 | - | - | 186947253 | 18604E29375 | s1 |
q | - | 124635 | 12463857 | 1246385079 | 124638507T9E | s | q | 14253 | 1426375 | 142638597 | 142638507E9 | s |
Fourteen | Sixteen | Eighteen | Twenty | Twenty-two | Sextuples | Septuples | Octuples | Nineteen | Twenty-one | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | 13527496E8A0BT | 13527496E8A0CTDB | 13527496E8A0CTFBGD | 13527496E8A0CTFBHDJG | 13527496E8A0CTFBHDKGLJ | g | a | 12537496E8A0T | 12537496E8A0CTB | 12537496E8A0CTFBD | 12537496E8A0CTFBHDG | 12537496E8A0CTFBHDKGJ | g |
b | 157392E4A6B8T0 | 157392E4A6C8D0BT | 157392E4A6C8F0GTDB | 157392E4A6C8F0HTJBGD | 157392E4A6C8F0HTKBLDJG | h | b | 127593E4A6T80 | 127593E4A6C8B0T | 127593E4A6C8F0DTB | 127593E4A6C8F0HTGBD | 127593E4A6C8F0HTKBJDG | h |
c | 1795E3A2B4T608 | * | 1795E3A2C4F6G8D0BT | 1795E3A2C4F6H8J0GTDB | * | j | c | 1297E5A3T4068 | 1297E5A3C4B6T80 | * | 1297E5A3C4F6H8G0DTB | 1297E5A3C4F6H8K0JTGBD | j |
c1 | 19E7A5B3T20486 | 19E7A5C3D2B4T608 | 19E7A5C3F2G4D6B8T0 | 19E7A5C3F2H4J6G8D0BT | 19E7A5C3F2H4K6L8J0GTDB | j1 | c1 | 12E9A7T503846 | 12E9A7C5B3T4068 | 12E9A7C5F3D4B6T80 | 12E9A7C5F3H4G6D8B0T | 12E9A7C5F3H4K6J8G0DTB | j1 |
c2 | 1EA9B7T5038264 | * | 1EA9C7F5G3D2B4T608 | 1EA9C7F5H3J2G4D6B8T0 | 1EA9C7F5H3K2L4J6G8D0BT | j2 | c2 | 12AET90785634 | 12AEC9B7T503846 | * | 12AEC9F7H5G3D4B6T80 | 12AEC9F7H5K3J4G6D8B0T | j2 |
c3 | 1ABET907856342 | * | 1ACEF9G7D5B3T20486 | 1ACEF9H7J5G3D2B4T608 | * | j3 | c3 | - | 12CABET90785634 | * | 12CAFEH9G7D5B3T4068 | 12CAFEH9K7J5G3D4B6T80 | j3 |
c4 | - | 1CDABET907856342 | 1CFAGED9B7T5038264 | 1CFAHEJ9G7D5B3T20486 | * | j4 | c4 | - | - | 12FCDABET90785634 | 12FCHAGED9B7T503846 | 12FCHAKEJ9G7D5B3T4068 | j4 |
c5 | - | - | 1FGCDABET907856342 | 1FHCJAGED9B7T5038264 | 1FHCKALEJ9G7D5B3T20486 | j5 | c5 | - | - | - | 12HFGCDABET90785634 | 12HFKCJAGED9B7T503846 | j5 |
c6 | - | - | - | 1HJFGCDABET907856342 | * | j6 | c6 | - | - | - | - | 12KHJFGCDABET90785634 | j6 |
c7 | - | - | - | - | 1KLHJFGCDABET907856342 | j7 | |||||||
d7 | - | - | - | - | 1LJKGHDFBCTA0E89674523 | k7 | |||||||
d6 | - | - | - | 1JGHDFBCTA0E89674523 | * | k6 | d6 | - | - | - | - | 12JKGHDFBCTA0E8967453 | k6 |
d5 | - | - | 1GDFBCTA0E89674523 | 1GDJBHTF0C8A6E492735 | 1GDJBLTK0H8F6C4A2E3957 | k5 | d5 | - | - | - | 12GHDFBCTA0E8967453 | 12GJDKBHTF0C8A6E49375 | k5 |
d4 | - | 1DBCTA0E89674523 | 1DBGTF0C8A6E492735 | 1DBGTJ0H8F6C4A2E3957 | * | k4 | d4 | - | - | 12DFBCTA0E8967453 | 12DGBHTF0C8A6E49375 | 12DGBJTK0H8F6C4A3E597 | k4 |
d3 | 1BTA0E89674523 | * | 1BTD0G8F6C4A2E3957 | 1BTD0G8J6H4F2C3A5E79 | * | k3 | d3 | - | 12BCTA0E8967453 | * | 12BDTG0H8F6C4A3E597 | 12BDTG0J8K6H4F3C5A7E9 | k3 |
d2 | 1T0B8A6E492735 | * | 1T0B8D6G4F2C3A5E79 | 1T0B8D6G4J2H3F5C7A9E | 1T0B8D6G4J2L3K5H7F9CEA | k2 | d2 | 12TA0E8967453 | 12TB0C8A6E49375 | * | 12TB0D8G6H4F3C5A7E9 | 12TB0D8G6J4K3H5F7C9AE | k2 |
d1 | 108T6B4A2E3957 | 108T6B4D2C3A5E79 | 108T6B4D2G3F5C7A9E | 108T6B4D2G3J5H7F9CEA | 108T6B4D2G3J5L7K9HEFAC | k1 | d1 | 120T8A6E49375 | 120T8B6C4A3E597 | 120T8B6D4F3C5A7E9 | 120T8B6D4G3H5F7C9AE | 120T8B6D4G3J5K7H9FECA | k1 |
d | 18604T2B3A5E79 | * | 18604T2B3D5G7F9CEA | 18604T2B3D5G7J9HEFAC | * | k | d | 12806T4A3E597 | 12806T4B3C5A7E9 | * | 12806T4B3D5G7H9FECA | 12806T4B3D5G7J9KEHAFC | k |
e | 1648203T5B7A9E | 1648203T5B7D9CEA | 1648203T5B7D9GEFAC | 1648203T5B7D9GEJAHCF | 1648203T5B7D9GEJALCKFH | l | e | 1268403T5A7E9 | 1268403T5B7C9AE | 1268403T5B7D9FECA | 1268403T5B7D9GEHAFC | 1268403T5B7D9GEJAKCHF | l |
f | 142638507T9BEA | 142638507T9BEDAC | 142638507T9BEDAGCF | 142638507T9BEDAGCJFH | 142638507T9BEDAGCJFLHK | m | f | 124638507T9AE | 124638507T9BECA | 124638507T9BEDAFC | 124638507T9BEDAGCHF | 124638507T9BEDAGCJFKH | m |
p | 12537496E8A0BT | 12537496E8A0CTDB | 12537496E8A0CTFBGD | 12537496E8A0CTFBHDJG | 12537496E8A0CTFBHDKGLJ | r | p | 13527496E8A0T | 13527496E8A0CTB | 13527496E8A0CTFBD | 13527496E8A0CTFBHDG | 13527496E8A0CTFBHDKGJ | r |
p1 | * | 1297E5A3C4D6B8T0 | 1297E5A3C4F6G8D0BT | * | 1297E5A3C4F6H8K0LTJBGD | r1 | p1 | * | 1795E3A2C4B6T80 | 1795E3A2C4F6D8B0T | * | 1795E3A2C4F6H8K0JTGBD | r1 |
p2 | 12AEB9T7058364 | 12AEC9D7B5T30486 | 12AEC9F7G5D3B4T608 | 12AEC9F7H5J3G4D6B8T0 | * | r2 | p2 | 1EA9T70583624 | 1EA9C7B5T302846 | 1EA9C7F5D3B2T4068 | 1EA9C7F5H3G2D4B6T80 | * | r2 |
p3 | - | - | 12FCGADEB9T7058364 | 12FCHAJEG9D7B5T30486 | 12FCHAKEL9J7G5D3B4T608 | r3 | p3 | - | - | 1CFADEB9T70583624 | 1CFAHEG9D7B5T302846 | 1CFAHEK9J7G5D3B2T4068 | r3 |
p4 | - | - | - | - | 12KHLFJCGADEB9T7058364 | r4 | p4 | - | - | - | - | 1HKFJCGADEB9T70583624 | r4 |
q4 | - | - | - | - | 12JLGKDHBFTC0A8E694735 | s4 | q4 | - | - | - | - | 1JGKDHBFTC0A8E6947253 | s4 |
q3 | - | - | 12DGBFTC0A8E694735 | 12DGBJTH0F8C6A4E3957 | 12DGBJTL0K8H6F4C3A5E79 | s3 | q3 | - | - | 1DBFTC0A8E6947253 | 1DBGTH0F8C6A4E29375 | 1DBGTJ0K8H6F4C2A3E597 | s3 |
q2 | 12TB0A8E694735 | 12TB0D8C6A4E3957 | 12TB0D8G6F4C3A5E79 | 12TB0D8G6J4H3F5C7A9E | * | s2 | q2 | 1T0A8E6947253 | 1T0B8C6A4E29375 | 1T0B8D6F4C2A3E597 | 1T0B8D6G4H2F3C5A7E9 | * | s2 |
q1 | * | 12806T4B3D5C7A9E | 12806T4B3D5G7F9CEA | * | 12806T4B3D5G7J9LEKAHCF | s1 | q1 | * | 18604T2B3C5A7E9 | 18604T2B3D5F7C9AE | * | 18604T2B3D5G7J9KEHAFC | s1 |
q | 124638507T9BEA | 124638507T9BEDAC | 124638507T9BEDAGCF | 124638507T9BEDAGCJFH | 124638507T9BEDAGCJFLHK | s | q | 142638507T9AE | 142638507T9BECA | 142638507T9BEDAFC | 142638507T9BEDAGCHF | 142638507T9BEDAGCJFKH | s |
The following symbols are used for bell numbers above twelve. Note that the letter E is already in use for eleven and that the letter I is not used because of its potential confusion with the number one.
thirteen | A |
fourteen | B |
fifteen | C |
sixteen | D |
seventeen | F |
eighteen | G |
nineteen | H |
twenty | J |
twenty-one | K |
twenty-two | L |
The letter(s) in the column headed fch give details of the internal falseness, with the tenors together, of that method. The notation is that used by Roger Baldwin in his classification of the 120 false course-heads, slightly extended for Royal and Maximus methods. In this classification, the groups of false course-heads, tenors together members only, are:
B | C | D | E | F | G | H | I | K | L | M | N |
---|---|---|---|---|---|---|---|---|---|---|---|
24365 | 25634 | 32546 46253 | 32465 43265 | 32654 45236 | 56423 63542 | 53462 63425 | 54632 65324 | 53624 65432 | 26543 ) L1 36245 ) L2 42563 ) | 23564 23645 25463 26435 | 34562 46325 54263 62345 |
23654 25436 32456 43256 | 34265 42365 | 24356 53426 63452 | 24635 25364 | 24563 26345 | - | 36542 46523 56243 62543 | - | 34526 ) K1 46352 ) 52346 ) 64253 ) 54362 ) K2 64325 ) | - | - | 35462 ) N1 43625 ) 53264 ) 62435 ) 35624 ) N2 45632 ) 52634 ) 65234 ) |
O | P | R | S | T | U | a | b | c | d | e | f |
36524 46532 52643 65243 | 54326 ) P1 64352 ) 56342 ) P2 64523 ) | 35642 45623 56234 62534 | 34625 45362 52364 64235 | 24536 24653 25346 26354 36452 43526 53246 62453 | 34256 ) U1 35426 ) 42356 ) 43652 ) 52436 ) 63254 ) 35264 ) U2 42635 ) | - | - | - | - | - | - |
53642 56432 63524 65423 | - | - | - | 32564 32645 45263 46235 | - | 23465 ) a1 23546 ) a2 26453 ) | 25643 26534 | 35246 36254 42536 42653 | 34652 45326 54236 62354 | 36425 43562 52463 63245 | 54623 56324 64532 65342 |
In-course false course-heads are shown in each case above the line, while the out-of-course false course heads appear below the line. The groups designated by small letters contain only out-of-course false course-heads.
In Major, the groups including both in-course and out-of-course false course-heads, and which are designated by capital letters, always occur as complete groups. Their presence is indicated in the tables by a single occurrence of the corresponding letter. In Royal and Maximus, the in-course and out-of-course components may occur separately, and for these categories of methods, the in-course and out-of course false course-head groups are shown separated by a slash. For example, the presence of letter E before a slash would indicate the false course-heads 32465 and 43265; while after a slash, would indicate the false course-heads 24635 and 25364. If both sets of false course-heads were present, E would be included twice.
A further consideration in Royal and Maximus is that certain of the groups defined above, K, L, N, P, U and a can subdivide. The subdivisions, indicated by K1, K2, L1, L2, N1, N2, P1, P2, U1, U2, a1 and a2 are also shown above.
As an example, Ibstock Surprise Royal fch is given as L1/BDK1c. The false course-heads associated with Ibstock are accordingly:
in-course | 26543 |
out-of-course | 23654, 25436, 32456, 43256, 24356, 53426, 63452, 34526, 46352, 52346, 64253, 35246, 36254, 42536, 42653. |
Following the accepted convention, methods having no in-course false course-heads have been designated as cps ("clear proof scale"), although these methods will usually have out-of-course false course-heads.
The 24 groups of false course-heads with tenors together also contain tenors parted members. The 3 additional groups of false course-heads with no tenors together members are:
X | Y (gamma) |
---|---|
257643 374652 627534 723645 265743 437625 632754 724653 276354 457632 635742 736425 276435 475623 657423 746532 346752 526734 672453 762354 367245 546723 673245 763542 367524 564732 675324 764235 |
267534 364752 625743 724635 275643 367542 635724 726534 276453 376425 637425 734652 675423 764532 |
Z (delta) | |
457623 546732 672354 763245 |
The notation is due to Edmund Shuttleworth, simplified by John Leary. When assessing the suitability of a composition with tenors together courses only, the presence of any of X, Y, Z against the method may be ignored. However if a composition has tenors parted courses, the presence of any of these additional groups must be considered. Note that the groups of false course-heads containing only out-of-course tenors together members (a - f) must be taken into account, even if the composition uses Bobs only, because these groups contain in-course tenors parted members.
Entries for plain methods which appeared in previous collections include a method number in a column headed CCC. The 360 Triples methods rung by the Manchester University Guild also show the code by which they were published.
So far as possible method entries include a Ringing World reference of the form year/page or, for the years 1911 to 1916, volume/page preceded by the letter V.
Anthony P.Smith, 72 Buriton Road, Winchester, Hampshire, SO22 6JE
Telephone: Winchester (01962) 881202. e-mail: smith_a_p@btinternet.com